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1. INTRODUCTION 
     There are many industrial processes that involve 

gas-liquid dispersion in stirred tanks, for example in 

fine-chemical manufacturing or in biochemical 

fermentations. For economic, as well as safety reasons, it 

is necessary to develop good models for designing of 

such reactors. The ability to predict the void fraction 

distribution and understanding of the physical 

mechanisms determining bubble size is crucial to any 

detailed theory of the transfer of heat, mass and 

momentum between phases and also provides essential 

information toward assessments of safer reactor designs 

and operations. Relevant experimental observations have 

revealed clear tendencies of the bubbles within the bulk 

liquid flow to undergo deformation, coalescence, 

breakage and condensation within the particular system 

of interest subject to local flow conditions and heat and  

 

mass transfer processes. Nevertheless, from a modelling  

perspective, enormous challenges remain in fully  

resolving the many associated interfacial effects 

occurring between different phases subject to turbulence 

for a wide range of gas–liquid bubbly flows.  

     Bubble size distribution in vertical pipes is not 

constant; rather it may change due to bubble-bubble 

interactions due to breakage or coalescence. No broadly 

applicable model for the determination of bubble size has 

yet been presented due to the insufficient understanding 

of the physical mechanisms. The presence of turbulence 

of the liquid phase especially in large scale industrial 

two-phase system will cause the larger bubbles to 

break-up until a dynamic equilibrium is reached. While 

disperse bubbly flows with low gas volume fractions are 

mostly mono-disperse, an increase of the gas volume 

leads to a broader bubble size distribution where bubbles 
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are subject to migration due to non-drag forces acting in 

lateral direction. These lateral bubble forces as well as 

the drag and the virtual mass force depend on the bubble 

size [3]. Especially for the lift force was found to change 

its direction as the bubble size varies [4, 5].  

     An adequate modelling approach has to account for 

all these phenomena. Since the interfacial area 

concentration represents the key parameter that links the 

interaction between phases, much attention have been 

concentrated towards better understanding the 

coalescence and breakage of bubbles and between 

bubbles and turbulent eddies. From the early introduction 

to commercial package [6], the population balance 

approach based on the MUSIG model has been 

frequently employed to predict the non-uniform bubble 

size distribution in a gas-liquid mixture by solving a 

range of bubble classes. Although encouraging results 

have been reported [7, 8], flows in large pipe with large 

bubble diameter, computational resource for solving 

such large number of transport equations could be 

extremely excessive. In this paper, DQMOM approach 

has been presented by the consideration of Method of 

Moments (MOM). Here, the bubble size distribution is 

tracked through its moments by integrating out the 

internal coordinates. Prediction by the DQMOM and 

MUSIG models are validated against gas-liquid flow 

experiments in vertical pipes of medium size by Lucas, 

Krepper et al. [1] and large size of Prasser, Beyer et al. 

[2] measured in the Forschungszentrum 

Dresden-Rossendorf FZD facility. 

 

2. MODEL DESCRIPTION  
2.1 Two fluid model for gas-liquid flow 
        The two-fluid model treating both the gas and liquid 

phases as continua solves two sets of conservation 

equations governing mass and momentum. Denoting the 

liquid as the continuum phase (αl) and the gas (i.e. 

bubbles) as disperse phase (αg), these equations can be 

written as: 
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     where g the gravity acceleration vector and P is the 

pressure. The closure law is required to determine the 

momentum transfer of the total interfacial force. This 

force strongly governs the distribution of the liquid and 

gas phases within the flow volume. On the right hand 

side of equation (2), Fi represents the total interfacial 

force which is composed of the drag force, lift force, wall 

lubrication force and the turbulent dispersion force 

respectively. Numerical details on handling these 

interfacial forces can be found in [9] and references 

therein. For handling the turbulence effects, the Shear 

Stress Transport (SST) model is adopted for the liquid 

phase [10], while the Sato’s bubble-induced turbulent 

viscosity model [11] was employed for the gas phase. 

2.2 MUltiple SIze Group (MUSIG) Model 
     In accordance with Fleischer, Becker et al. [12], the 

bubble size distribution is calculated with population 

balance equation (PBE) that is generally expressed in an 

integro-differential form describing the local Bubble 

Size Distribution (BSD) written as 
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where  txf ,,  is the bubble number density 

distribution per unit mixture and bubble volume, 

 txV ,,  is velocity vector. On the right hand side, the 

term  txS ,,  contains the bubble source/sink rates per 

unit mixture volume due to the bubble interactions such 

as coalescence, break-up and phase change. 

 

Table 1: Flow conditions of all test cases and its inlet 

boundary conditions 

 
MTLOOP Experiment 

 Case M107 Case M118 

[
0/ DZlj ] 

(m/s) 1.017 1.017 

 

[
0/ DZlj ] 

(m/s) 0.140 0.219 

 

[
0/ DZ

g ] 
(%) [12.1] 

 

[17.72] 

[
0.0/ DzSD ] 

 

(mm) 

 
[5.14] [6.38] 

TOPFLOW Experiment 

  Case T107 Case T118 

[
0/ DZlj ] 

(m/s) 1.017 1.017 

 

[
0/ DZlj ] 

(m/s) 0.140 0.2194 

 

[
0/ DZ

g ] 
(%) [12.1] 

 

[17.72] 

[
0.0/ DzSD ] 

 

(mm) 

 
[20.18] [23.28] 

 

 

A sophisticated model, namely MUltiple SIze Group 

(MUSIG) was first introduced by Lo [6] and is today the 

most commonly used technique for solving PBE. The 

technique proposed by Kumar and Ramkrishna [13] that 

allows the usage of variable M bubble size groups to 

reduce the numerical effort is adopted, such as: 
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The interaction term  BCBC
i DDPPS   

contains the source rates of CP , BP  , CD  and BD , 

which are the production rates due to coalescence and 

break-up and the death rate to coalescence and break-up 

of bubbles respectively. The birth and death rates can be 

formulated in terms of size fraction.  



© ICME2011  FL-023 3 

   lk
lk

lk
l

k l
k

g
j

g
j

C MMa
MM

MM
ffP ,

2

12 
   (5) 

   
k

ki
k

ki
g
j

g
j

C MMa
M

ffD ,
12

   (6) 

 

  k
k

ik
g
j

g
j

B fMMrP  ,    (7) 

 

 
k

kii
g
j

g
j

B MMrfD ,    (8) 

 

2.3 Direct quadrature method of moments 
(DQMOM) 
     The DQMOM is based on the direct solution of the 

transport equations for weights and abscissas of the 

quadrature approximation [14]. According to Marchisio 

and Fox [15] the main idea is to keep track the primitive 

variables appearing in the quadrature approximation, 

instead of moments of the BSD.  

The weights and abscissas can be related to the size 

fraction of the dispersed phase (fk) and a variable defined 

as kkk Mf . The size fraction of fk is related to the 

weights and abscissas by: 

 

kiikgg MNf       (9) 

 

Using the above expression, the transport equations 

become: 
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The moment transform of the coalescence and break-up 

of the term kS can then be expressed as: 
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Where the terms P and D represent the birth and death 

rates of the coalescence and break-up of bubbles which is 

equivalent to  txS ,, in equation (3).  

     Coalescence kernel by Prince and Blanch [16] and 

break-up mechanism of Luo and Svendsen [17] were 

employed to evaluate the above birth and death rates. 

 

  

  
 

Fig 1. Comparison of predicted bubble size distribution 

for MTLOOP 

 

3. EXPERIMENTAL DETAILS 
     Two individual set of experiments – MTLOOP [1] and 

TOPFLOW [2]– that have been performed in the 

Forschungszentrum Dresden-Rossendorf FZD facility 

was considered for the validation of simulation results. 

Experimental details on flow measurement and setup can 

be found out from [1] and [2]. 

 

4.NUMERICAL DETAILS AND RESULTS  
     Numerical calculations were achieved through the use 

of the generic computational fluid dynamics code 

ANSYS-CFX11 [19]. The DQMOM transport equation 

with appropriate source and sink terms describing the 

coalescence and break-up rate of bubble was 

implemented through the CFX Command Language 

(CCL). 

 

  

  
 

Fig 2. Comparison of predicted bubble size distribution 

for TOPFLOW 

 

     Radial symmetry was assumed in both experimental 

conditions thereby allowing the computational geometry 

to be simplified through consideration of a 60
o
 radial 

sector of the pipe with symmetry boundary conditions 

being imposed at both vertical sides of the computational 

domain. Four sets of experiment data under two different 

flow conditions – hereafter denoted as case M107, M118, 

T107 and T118 – were selected from both experiments. 

For the MTLOOP experiment, a uniform gas volume 
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fraction was specified at the inlet boundary. On the other 

hand, 12 equally spaced point sources of the gas phase 

were placed at the circumference of the 60
0
 radial sectors 

to represent the wall injection method in TOPFLOW. 

Gas injection rate at each point source was assumed to be 

identical. Details of the boundary conditions are 

summarized in Table 1. Based on grid sensitivity test 

performed for the MTLOOP and TOPFLOW 

experiments, grid independent solutions have revealed 

that computational meshes which consisted of 18,223 

elements for MTLOOP and 48,000 elements for 

TOPFLOW did not appreciably change even though 

finer computational meshes were tested. For all flow 

conditions, reliable convergence criterion based on RMS 

(root mean square) residual of 1.0 10
-4

 was adopted for 

the termination of numerical calculations. 

Following the study carried out by Krepper, Lucas et al. 

[18], dimensionless factors for the mass transfer rates of 

breakage FB = 0.25 and FC = 0.05 for the coalescence 

were adapted to harmonize the mechanism of bubble 

coalescence and break-up kernels of the MUSIG and 

DQMOM model. For comparison purpose, these 

dimensionless factors were kept constant for all test cases 

in during the entire numerical calculations. 

 

  

  
 

Fig 3. Comparison of the predicted radial gas volume 

fraction distributions for MTLOOP 

 

  

  
 

Fig 4. Comparison of the predicted radial gas volume 

fraction distributions for TOPFLOW 

 

4.1 Change in Bubble size distribution due to 
Coalescence and Breakage 
        Fig 1 shows the predicted cross- sectional averaged 

bubble size distribution from the DQMOM model with 4 

moments in comparison with the MTLOOP experimental 

data. The axial development of the measured area 

averaged Sauter mean diameter was assessed and 

predictions were compared at the measuring stations of 

z/D = 4.5 and 60. In order to assess its predictive 

capability, additional comparison is also carried out 

against the predicted MUSIG results. Close to the gas 

injection capillaries where coalescence processes began, 

the initial bubble size distributions were considerably 

narrow. However, as shown in Fig 1b &1d, the bubble 

size distribution has significantly widened after a series 

of merging procedures.  

     It has emerged that the MUSIG model has over 

predicted the small bubbles at the axial location of z/D = 

60. This could possibly due to homogeneous MUSIG 

model application. In general, prediction from the 

DQMOM model was reasonably well agreed with the 

measurement for TOPFLOW experiment at different 

axial location of z/D = 1.7 and 39.9. According to Fig 2, 

bimodal peak was found close to the vicinity of injection 

unit for both the models. For well developed flow bubble 

size distribution was relatively narrower and 

single-peaked profile in well agreement with the 

experiment. 
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Fig 5. Comparison of the predicted axial gas volume 

fraction distributions 

 

4.2 Void fraction distribution 
        The behavior of void fraction profiles measured at 

z/D=4.5 and 60 in MTLOOP experiment for different 

flow condition of M107 and M118 is depicted in Fig 3. 

As can be seen various phase distribution patterns were 

observed in the present experiment, and void fraction 

profiles from DQMOM and MUSIG model were found 

to be capable of successfully predicted the separation 

between small and large bubbles within the gas-liquid 

flows. For both flow condition of M107 and M118 of 

DQMOM and MUSIG model, the void fraction radial 

profile evolves from a wall-peak to a core-peak trend all 

the way through radial direction. This clearly 

demonstrates that the adopted interfacial force models 

successfully predicted the trend of the gas phase lateral 

motions and the evolution of smaller bubbles to larger 

bubbles shows the dominant effect of bubble coalescence. 

It appeared that DQMOM gave slightly better predictions 

especially at the well-developed core peaking 

characteristics at z/D = 60 in both test cases of M107 and 

M118. However, as depicted from Fig 3b & 3d void 

fraction at the core of the pipe slightly under predicted by 

MUSIG model. The possible explanation of the 

under-prediction could be caused by the uncertainties 

concerning the turbulence model which predicted the 

turbulent energy dissipation and coupled with the 

coalescence and breakage model. 

     For TOPFLOW experiment Fig 4 shows the void 

fraction distribution obtained from the DQMOM model 

comparing with the MUSIG model and measured data at 

the dimensionless axial position z/D = 1.7 and 39.9. Both 

models were capable to capture the transition process 

from ‘wall peak’ to ‘core peak’ of the gas volume fraction 

profile. Unlike the behavior of the MTLOOP the bubbles 

were injected from the gas injection orifices located on 

the circumference of the pipe, highly concentrated 

bubbles were formed within the wall proximity that 

results ‘wall peak’ void fraction distribution close to inlet 

of the pipe. Predicted gas volume fraction profile for both 

models in axial direction is also in good agreement with 

the measurement as illustrated in Fig 5. Due to pressure 

gradient the bubble expansion occurs therefore average 

void fraction increases over the axial distance. Thus 

DQMOM model capability is validated for modelling 

gas-liquid flow with rigorous bubble interactions. 

 

Table.2: Computational Time 

 

 Time 

MUSIG - MTLOOP 118 (20 Size group) 53hrs 

DQMOM - MTLOOP 118 (4MOM) 3 hrs 

MUSIG – TOPFLOW 118 (20 Size group) 

DQMOM - MTLOOP 118 (4MOM) 

82 hrs 

14 hrs 

 
5. CONCLUSION 
     The assessment of two population balance models – 

MUSIG and DQMOM models – has been performed 

against the experimental data of Lucas et al. [1] and 

Prasser et al. [2] measured in Forschungszentrum 

Dresden-Rossendorf FZD facility. With two different gas 

injection methods, bubble coalescence was found to be 

dominant feature in the MTLOOP experiment while 

bubble break-up prevailed as the main characteristics in 

the TOPFLOW experiment. Owing to the high resolution 

of bubble sizes that can be achieved via the use of the 

MUSIG model, encouraging results have been attained. 

Nonetheless, the MUSIG model required to solve extra 

transport equations posing significant burden to both 

computational time and resources as depicted in Table. 2. 

Although very few number of scalars were necessary to 

solve for DQMOM, encouraging results clearly 

demonstrated that the evolution of bubble sizes was well 

captured by the DQMOM model. With the relatively 

compact mathematical expression, the DQMOM model 

can be considered as an efficient and attractive 

alternative for population balance modeling of gas-liquid 

flows. 
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7. NOMENCLATURE 
 

Symbol Meaning Unit 

Ds Bubble Sauter Mean 

Diameter 

(mm) 

j Superficial Velocity (m/s) 

P 

t 

α 

ε 

 

ρ 

σ 

µ
e 

Pressure 

Bubble Contact Time 

Void Fraction 

Turbulence Kinetic Energy 

Dissipation 

Density 

Surface Tension 

Effective Viscosity 

(Pa) 

(s) 

(-) 

(m
2
/s

3
) 

 

(kg/m
3
) 

(N/m) 

(Pa.s) 

 


